疲劳裂纹扩展速率

更新时间:2022-08-25 14:21

疲劳裂纹扩展速率指交变应力每循环一次裂纹长度的增加量。通常用da/dN表示,式中a为裂纹长度,N为应力循环次数。da/dN对于估算裂纹体疲劳寿命有重要作用。

定义

疲劳裂纹扩展速率da/dN,是在疲劳载荷作用下,裂纹长度a随循环周次N的变化率,反映裂纹扩展的快慢。

疲劳载荷:在工程上引起的疲劳破坏的应力或应变有时呈周期性变化,有时是随机的。

疲劳裂纹:某些材料在连续交变应力作用下,会在其表面逐渐生成裂纹,并随着作用时间而逐渐向纵深发展。使裂纹打一展,试件的力学性能下降,最终导致完全断裂。应该指出,有些材料耐初始裂纹生长的性能很好,但一旦生成却发展很快。而另一些材料就正好相反。

测定方法

曲线测定方法利用带有预制疲劳裂纹的标准试样,在给定载荷条件下进行恒幅疲劳裂纹扩展实验,记录裂纹扩展过程中的尺寸a和循环次数N,即可得到如下图1所示的a~N曲线。a~N 曲线给出了裂纹长度随载荷循环次数的变化。

图1中示出了应力比R=0时,三种不同恒幅载荷Ds作用下的a~N曲线。a~N曲线的斜率,就是裂纹扩展速率da/dN。注意到裂尖应力强度因子 , 是几何修正因子。

则由图1中a~N曲线可知,对于给定的a,循环应力幅 增大,即 增大,则曲线斜率da/dN增大。对于给定的,裂纹长度a增大,即增大,则曲线斜率da/dN增大。

故裂纹扩展速率da/dN的控制参量是应力强度因子幅度

由a~N曲线中任一裂纹尺寸 处的斜率,即可知其扩展速率(da/dN)i,同时,由已知载荷和,还可以计算相应的 。这样就由a~N曲线得到了一组,[,(da/dN)i]数据,进而可绘出 曲线。

关系曲线

曲线在双对数坐标中画出的曲线,如右图2所示。图中 曲线可分为低、中、高速率三个区域:

1区

是低速率区。该区域内,随着应力强度因子幅度 的降低,裂纹扩展速率迅速下降。到某一下限值时,裂纹扩展速率趋近于零(da/dN<10-10m/c)。

若,则可以认为裂纹不发生扩展。

是反映疲劳裂纹是否扩展的一个重要的材料参数,称为疲劳裂纹扩展的门槛应力强度因子幅度:是曲线的下限。

当时裂纹扩展较快,很快进入第二阶段。在第一阶段中,应力比、显微组织、环境的影响很大。在裂纹扩展的第二阶段,其扩展速率受应力比、组织类型和环境的影响很小。当过渡到第三阶段,裂纹又加速扩展,当Kmax达到K1c(断裂韧度)时试样就断裂了。这一阶段受应力比、组织和断裂韧性的影响较大。

研究疲劳裂纹门槛值在理论上和实际工程应用上都是有意义的。十分明显,一般的机械零件和工程构件是不会以来作为设计指标的。因为数值很低,如以来作为设计标准,这无疑是要求工作应力很低或者容许的裂纹尺寸很小。疲劳门槛值除了因应力比R的增加而减小外,还和组织有关。

2区

是中速率裂纹扩展区。此时,裂纹扩展速率一般在 - m/c范围内。大量的实验研究表明:中速率区内, 有良好的对数线性关系。利用这一关系进行疲劳裂纹扩展寿命预测,是疲劳裂纹扩展研究的重点。

3区

为高速率区,在这一区域内,da/dN大,裂纹扩展快,寿命短。其对裂纹扩展寿命的贡献,通常可以不考虑。此区域的上限为 ,是由断裂判据 给出的。

比较

曲线与S-N曲线(疲劳曲线)一样,都表示了材料的疲劳性能;只不过S-N曲线所描述的是疲劳裂纹萌生性能, 曲线描述的是疲劳裂纹扩展性能而已。值得指出的是:

S-N曲线以R=-1(对称循环)时的曲线作为基本曲线。

曲线则是以R=0(脉冲循环)时的曲线作为基本曲线的。

公式及推导

设 ,

则 ,

Y——几何因子或形状因子;△k——应力强度因子变程。

Pairs建议: ,

有 或 或 ,

得 。

影响因素

对于恒定载荷, 和 都是a的函数。 ,其中 ——初始裂纹长度; ——断裂时裂纹长度。

对于Griffith裂纹:。当 时,对 起作用的主要在于 ,应尽可能小。

预防措施

(1)结构设计缺陷(过大的截面变化、过小的圆角半径等)、表面加工质量缺陷(如表面粗糙度过大、表面刀痕、磨削裂纹、划伤;热处理中缺陷如淬火裂纹、渗碳和氮化等表面出现网状组织等)都加速疲劳磨损,导致疲劳失效。因此改善零件结构,避免应力集中。如采取圆角过渡;加大轴肩的圆角半径均可将这些区域的峰值应力降下来,可有效的防止应力集中,提高其疲劳强度,轴类零件的表面或表层受力集中,是最容易产生裂纹的部位,所以采取表面强化的方法,如提高零件的表面质量,对零件进行喷丸处理、表面淬火等可提高零件的表层力学性能,提高疲劳强度。

(2)在金属材料中加入合金元素,提高材料的疲劳强度,大大延长材料的使用寿命。

(3)对在腐蚀性环境工作的机械零件进行处理,避免产生腐蚀疲劳。如加入合金元素,防止产生晶间腐蚀。

(4)对零件、构件进行定期检测(用超声波和X光检测能够发现细小裂纹),防范于未然。

(5)材料表层内部组织缺陷、表层材料的内部缺陷,如夹杂、气孔、锻造夹层以及各种微裂纹,常由此作为裂纹源而导致疲劳失效,所以应提高金属材料质量。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}